
NAG Fortran Library Routine Document

E04DGF=E04DGA

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the details of

the algorithm. If you wish to use default settings for all of the optional parameters, you need only read

Section 1 to Section 9 of this document. Refer to the additional Section 10 and Section 11 for a description of

the algorithm and the specification of the optional parameters.

1 Purpose

E04DGF=E04DGA minimizes an unconstrained nonlinear function of several variables using a pre-
conditioned, limited memory quasi-Newton conjugate gradient method. First derivatives (or an
‘acceptable’ finite difference approximation to them) are required. It is intended for use on large scale
problems.

E04DGA is a version of E04DGF that has additional parameters in order to make it safe for use in
multithreaded applications (see Section 5 below). The initialisation routine E04WBF must have been
called prior to calling E04DGA.

2 Specifications

2.1 Specification for E04DGF

SUBROUTINE E04DGF(N, OBJFUN, ITER, OBJF, OBJGRD, X, IWORK, WORK, IUSER,
1 USER, IFAIL)

INTEGER N, ITER, IWORK(N+1), IUSER(*), IFAIL
real OBJF, OBJGRD(N), X(N), WORK(13*N), USER(*)
EXTERNAL OBJFUN

2.2 Specification for E04DGA

SUBROUTINE E04DGA(N, OBJFUN, ITER, OBJF, OBJGRD, X, IWORK, WORK, IUSER,
1 USER, LWSAV, IWSAV, RWSAV, IFAIL)

INTEGER N, ITER, IWORK(N+1), IUSER(*), IWSAV(610), IFAIL
real OBJF, OBJGRD(N), X(N), WORK(13*N), USER(*), RWSAV(475)
LOGICAL LWSAV(120)
EXTERNAL OBJFUN

Before calling E04DGA, or either of the option setting routines E04DJA or E04DKA, routine E04WBF
must be called. The specification for E04WBF is:

SUBROUTINE E04WBF(RNAME, CWSAV, LCWSAV, LWSAV, LLWSAV, IWSAV, LIWSAV,
1 RWSAV, LRWSAV, IFAIL)

INTEGER LCWSAV, LLWSAV, IWSAV(LIWSAV), LIWSAV, LRWSAV, IFAIL
real RWSAV(LRWSAV)
LOGICAL LWSAV(LLWSAV)
CHARACTER*6 RNAME
CHARACTER*80 CWSAV(LCWSAV)

E04WBF should be called with RNAME ¼ ’E04DGA’. LCWSAV, LLWSAV, LIWSAV and LRWSAV, the
declared lengths of CWSAV, LWSAV, IWSAV and RWSAV respectively, must satisfy:

LCWSAV � 1

LLWSAV � 120

LIWSAV � 610

LRWSAV � 475

E04 – Minimizing or Maximizing a Function E04DGF=E04DGA

[NP3546/20A] E04DGF=E04DGA.1

The contents of the arrays CWSAV, LWSAV, IWSAV and RWSAV must not be alterered between calling
routines E04WBF and E04DGA, E04DJA or E04DKA.

3 Description

E04DGF=E04DGA is designed to solve unconstrained minimization problems of the form

minimize
x2Rn

F ðxÞ subject to �1 � x � 1;

where x is an n element vector.

The user must supply an initial estimate of the solution.

For maximum reliability, it is preferable to provide all first partial derivatives. If all of the derivatives
cannot be provided, users are recommended to obtain approximate values (using finite differences) by
calling E04XAF=E04XAA from within OBJFUN. This is illustrated in Section 9 of the document for
E04DJF=E04DJA.

The method used by E04DGF=E04DGA is described in Section 10.

4 References

Gill P E and Murray W (1979) Conjugate-gradient methods for large-scale nonlinear optimization
Technical Report SOL 79-15 Department of Operations Research, Stanford University

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

5 Parameters

1: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

2: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

Its specification is:

SUBROUTINE OBJFUN(MODE, N, X, OBJF, OBJGRD, NSTATE, IUSER, USER)

INTEGER MODE, N, NSTATE, IUSER(*)
real X(N), OBJF, OBJGRD(N), USER(*)

1: MODE – INTEGER Input/Output

On entry: MODE indicates which values must be assigned during each call of OBJFUN.
Only the following values need be assigned:

if MODE ¼ 0, OBJF;

if MODE ¼ 2, OBJF and OBJGRD.

On exit: MODE may be set to a negative value if the user wishes to terminate the solution
to the current problem, and in this case E04DGF=E04DGA will terminate with IFAIL set
to MODE.

2: N – INTEGER Input

On entry: n, the number of variables.

3: X(N) – real array Input

On entry: x, the vector of variables at which the objective function and its gradient are to
be evaluated.

E04DGF=E04DGA NAG Fortran Library Manual

E04DGF=E04DGA.2 [NP3546/20A]

4: OBJF – real Output

On exit: the value of the objective function at x.

5: OBJGRD(N) – real array Output

On exit: if MODE ¼ 2, OBJGRDðiÞ must contain the value of
@F

@xi

evaluated at x, for

i ¼ 1; 2; . . . ; n.

6: NSTATE – INTEGER Input

On entry: NSTATE will be 1 on the first call of OBJFUN by E04DGF=E04DGA, and 0
for all subsequent calls. Thus, you may wish to test, NSTATE within OBJFUN in order to
perform certain calculations once only. For example, you may read data or initialise
COMMON blocks when NSTATE ¼ 1.

7: IUSER(*) – INTEGER array User Workspace
8: USER(*) – real array User Workspace

OBJFUN is called from E04DGF=E04DGA with the parameters IUSER and USER as
supplied to E04DGF=E04DGA. You are free to use arrays IUSER and USER to supply
information to OBJFUN as an alternative to using COMMON.

OBJFUN must be declared as EXTERNAL in the (sub)program from which E04DGF=E04DGA is
called. Parameters denoted as Input must not be changed by this procedure.

Note: OBJFUN should be tested separately before being used in conjunction with
E04DGF=E04DGA. See also the optional parameter Verify in Section 11.2.

3: ITER – INTEGER Output

On exit: the total number of iterations performed.

4: OBJF – real Output

On exit: the value of the objective function at the final iterate.

5: OBJGRD(N) – real array Output

On exit: the gradient of the objective function at the final iterate (or its finite difference
approximation).

6: X(N) – real array Input/Output

On entry: an initial estimate of the solution.

On exit: the final estimate of the solution.

7: IWORK(N+1) – INTEGER array Workspace
8: WORK(13*N) – real array Workspace

9: IUSER(*) – INTEGER array User Workspace

Note: the first dimension of the array IUSER must be at least 1.

This array is not used by E04DGF=E04DGA, but is passed directly to routine OBJFUN and may be
used to supply information to OBJFUN.

10: USER(*) – real array User Workspace

Note: the first dimension of the array USER must be at least 1.

This array is not used by E04DGF=E04DGA, but is passed directly to routine OBJFUN and may be
used to supply information to OBJFUN.

E04 – Minimizing or Maximizing a Function E04DGF=E04DGA

[NP3546/20A] E04DGF=E04DGA.3

11: IFAIL – INTEGER Input/Output

Note: for E04DGA, IFAIL does not occur in this position in the parameter list. See the additional

parameters described below.

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

E04DGF=E04DGA returns with IFAIL ¼ 0 if the following three conditions are satisfied:

(i) Fk�1 � Fk < �F ð1þ jFkjÞ
(ii) kxk�1 � xkk <

ffiffiffiffiffi
�F

p ð1þ kxkkÞ

(iii) kgkk � ffiffiffiffiffi
�F3

p ð1þ jFkjÞ or kgkk < �A

where �F is the value of the optional parameter Optimality Tolerance (default value ¼ �0:8; see
Section 11.2) and �A is the absolute error associated with computing the objective function.

For a full discussion on termination criteria see Chapter 8 of Gill et al. (1981).

Note: the following are additional parameters for specific use with E04DGA. Users of E04DGF therefore need

not read the remainder of this section.

11: LWSAV(120) – LOGICAL array Workspace
12: IWSAV(610) – INTEGER array Workspace
13: RWSAV(475) – real array Workspace

The arrays LWSAV, IWSAV and RWSAV must not be altered between calls to any of the routines
E04WBF, E04DGA, E04DJA or E04DKA.

14: IFAIL – INTEGER Input/Output

Note: see the parameter description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04DGF=E04DGA because the user set
MODE < 0 in routine OBJFUN. The value of IFAIL will be the same as the user’s setting of
MODE.

IFAIL ¼ 1

Not used by this routine.

IFAIL ¼ 2

Not used by this routine.

E04DGF=E04DGA NAG Fortran Library Manual

E04DGF=E04DGA.4 [NP3546/20A]

IFAIL ¼ 3

The limiting number of iterations (as determined by the optional parameter Iteration Limit
(default value ¼ maxð50; 5nÞ; see Section 11.2) has been reached.

If the algorithm appears to be making satisfactory progress, then Iteration Limit may be too small.
If so, increase its value and rerun E04DGF=E04DGA. If the algorithm seems to be making little or
no progress, then the user should check for incorrect gradients as described below under IFAIL ¼ 7.

IFAIL ¼ 4

The computed upper bound on the step length taken during the linesearch was too small. A rerun
with an increased value of the optional parameter Maximum Step Length (� say) may be

successful unless � � 1020 (the default value; see Section 11.2), in which case the current point
cannot be improved upon.

IFAIL ¼ 5

Not used by this routine.

IFAIL ¼ 6

The conditions for an acceptable solution (see parameter IFAIL in Section 5) have not all been met,
but a lower point could not be found.

If routine OBJFUN computes the objective function and its gradient correctly, then this may occur
because an overly stringent accuracy has been requested, i.e., the value of the optional parameter

Optimality Tolerance (default value ¼ �0:8; see Section 11.2) is too small or if �k ’ 0. In this case
you should apply the three tests described above under IFAIL ¼ 0 to determine whether or not the
final solution is acceptable. For a discussion of attainable accuracy see Gill et al. (1981).

If many iterations have occurred in which essentially no progress has been made or
E04DGF=E04DGA has failed to move from the initial point, routine OBJFUN may be incorrect.
You should refer to the comments below under IFAIL ¼ 7 and check the gradients using the
optional parameter Verify (default value ¼ 0; see Section 11.2). Unfortunately, there may be small
errors in the objective gradients that cannot be detected by the verification process. Finite-difference
approximations to first derivatives are catastrophically affected by even small inaccuracies.

IFAIL ¼ 7

The user-provided derivatives of the objective function appear to be incorrect.

Large errors were found in the derivatives of the objective function. This value of IFAIL will occur
if the verification process indicated that at least one gradient element had no correct figures. You
should refer to the printed output to determine which elements are suspected to be in error.

As a first step, you should check that the code for the objective values is correct – for example, by
computing the function at a point where the correct value is known. However, care should be taken
that the chosen point fully tests the evaluation of the function. It is remarkable how often the values
x ¼ 0 or x ¼ 1 are used to test function evaluation procedures, and how often the special properties
of these numbers make the test meaningless.

Special care should be used in this test if computation of the objective function involves subsidiary
data communicated in COMMON storage. Although the first evaluation of the function may be
correct, subsequent calculations may be in error because some of the subsidiary data has
accidentally been overwritten.

Errors in programming the function may be quite subtle in that the function value is ‘almost’
correct. For example, the function may not be accurate to full precision because of the inaccurate
calculation of a subsidiary quantity, or the limited accuracy of data upon which the function
depends. A common error on machines where numerical calculations are usually performed in
double precision is to include even one single precision constant in the calculation of the function;
since some compilers do not convert such constants to double precision, half the correct figures may
be lost by such a seemingly trivial error.

E04 – Minimizing or Maximizing a Function E04DGF=E04DGA

[NP3546/20A] E04DGF=E04DGA.5

IFAIL ¼ 8

The gradient ðg ¼ @F

@x
Þ at the starting point x0 is ‘too small’. More precisely, the value of

gðx0ÞT gðx0Þ is less than �Rj1þ F ðx0Þj, where �R is the value of the optional parameter Function

Precision (default value ¼ �0:9; see Section 11.2).

The problem should be rerun from a different starting point.

IFAIL ¼ 9

An input parameter is invalid.

7 Accuracy

On successful exit (IFAIL ¼ 0) the accuracy of the solution will be as defined by the optional parameter

Optimality Tolerance (default value ¼ �0:8; see Section 11.2).

8 Further Comments

To evaluate an ‘acceptable’ set of finite difference intervals using E04XAF=E04XAA requires 2 function
evaluations per variable for a well-scaled problem and up to 6 function evaluations per variable for a badly
scaled problem.

8.1 Description of Printed Output

This section describes the intermediate printout and final printout produced by E04DGF=E04DGA. The
level of printed output can be controlled by the user (see the description of the optional parameter Print
Level in Section 11.2). Note that the intermediate printout and final printout are produced only if Print
Level � 10 (the default for E04DGF, by default no output is produced by E04DGA).

The following line of summary output (< 80 characters) is produced at every iteration. In all cases, the
values of the quantities are those in effect on completion of the given iteration.

Itn is the iteration count.

Step is the step �k taken along the computed search direction. On reasonably well-
behaved problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.

Nfun is the cumulated number of evaluations of the objective function needed for the
linesearch. Evaluations needed for the verification of the gradients by finite
differences are not included. Nfun is printed as a guide to the amount of work
required for the linesearch. E04DGF=E04DGA will perform at most 11
function evaluations per iteration.

Objective is the value of the objective function at xk.

Norm G is the Euclidean norm of the gradient of the objective function at xk.

Norm X is the Euclidean norm of xk.

Norm (X(k-1)-X(k)) is the Euclidean norm of xk�1 � xk.

The following describes the printout for each variable.

Variable gives the name (Varbl) and index j, for j ¼ 1; 2; . . . ; n of the variable.

Value is the value of the variable at the final iteration.

Gradient Value is the value of the gradient of the objective function with respect to the jth
variable at the final iteration.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

E04DGF=E04DGA NAG Fortran Library Manual

E04DGF=E04DGA.6 [NP3546/20A]

9 Example

To find a minimum of the function

F ¼ ex1ð4x2
1 þ 2x2

2 þ 4x1x2 þ 2x2 þ 1Þ:
The initial point is

x0 ¼ ð�1:0; 1:0ÞT ;
and F ðx0Þ ¼ 1:8394 (to five figures).

The optimal solution is

x� ¼ ð0:5;�1:0ÞT ;

and F ðx�Þ ¼ 0.

The document for E04DJF=E04DJA includes an example program to solve the same problem using some
of the optional parameters described in E04DGF=E04DGA. The remainder of this document is intended
for more advanced users. E04DGF=E04DGA contains a description of the algorithm which may be
needed in order to understand E04DGF=E04DGA. E04DGF=E04DGA describes the optional parameters
which may be set by calls to E04DJF=E04DJA and/or E04DKF=E04DKA.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

Note: the following program illustrates the use of E04DGF. An equivalent program illustrating the use of

E04DGA is available with the supplied Library and is also available from the NAG web site.

* E04DGF Example Program Text
* Mark 16 Revised. NAG Copyright 1993.
* .. Parameters ..

INTEGER NMAX
PARAMETER (NMAX=10)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..
real OBJF
INTEGER I, IFAIL, ITER, N

* .. Local Arrays ..
real OBJGRD(NMAX), USER(1), WORK(13*NMAX), X(NMAX)
INTEGER IUSER(1), IWORK(NMAX+1)

* .. External Subroutines ..
EXTERNAL E04DGF, OBJFUN

* .. Executable Statements ..
WRITE (NOUT,*) ’E04DGF Example Program Results’

* Skip heading in data file
READ (NIN,*)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

*
* Read X from data file
*

READ (NIN,*) (X(I),I=1,N)
*
* Solve the problem
*

IFAIL = -1
*

CALL E04DGF(N,OBJFUN,ITER,OBJF,OBJGRD,X,IWORK,WORK,IUSER,USER,
+ IFAIL)

*
END IF
STOP
END

*

E04 – Minimizing or Maximizing a Function E04DGF=E04DGA

[NP3546/20A] E04DGF=E04DGA.7

SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER)
* Routine to evaluate F(x) and its 1st derivatives.
* .. Parameters ..

real ONE, TWO, FOUR
PARAMETER (ONE=1.0e0,TWO=2.0e0,FOUR=4.0e0)

* .. Scalar Arguments ..
real OBJF
INTEGER MODE, N, NSTATE

* .. Array Arguments ..
real OBJGRD(N), USER(*), X(N)
INTEGER IUSER(*)

* .. Local Scalars ..
real EXPX1, X1, X2

* .. Intrinsic Functions ..
INTRINSIC EXP

* .. Executable Statements ..
X1 = X(1)
X2 = X(2)

*
EXPX1 = EXP(X1)
OBJF = EXPX1*(FOUR*X1**2+TWO*X2**2+FOUR*X1*X2+TWO*X2+ONE)

*
IF (MODE.EQ.2) THEN

OBJGRD(1) = FOUR*EXPX1*(TWO*X1+X2) + OBJF
OBJGRD(2) = TWO*EXPX1*(TWO*X2+TWO*X1+ONE)

END IF
*

RETURN
END

9.2 Program Data

E04DGF Example Program Data
2 :Value of N

-1.0 1.0 :End of X

9.3 Program Results

E04DGF Example Program Results

*** E04DGF
*** Start of NAG Library implementation details ***

Implementation title: Generalised Base Version
Precision: FORTRAN double precision

Product Code: FLBAS20D
Mark: 20A

*** End of NAG Library implementation details ***

Parameters

Variables.............. 2

Maximum step length.... 1.00E+20 EPS (machine precision) 1.11E-16
Optimality tolerance... 3.26E-12 Linesearch tolerance... 9.00E-01

Est. opt. function val. None Function precision..... 4.38E-15
Verify level........... 0

Iteration limit........ 50 Print level............ 10

Verification of the objective gradients.
--

The objective gradients seem to be ok.

Directional derivative of the objective -1.47151776E-01

E04DGF=E04DGA NAG Fortran Library Manual

E04DGF=E04DGA.8 [NP3546/20A]

Difference approximation -1.47151796E-01

Itn Step Nfun Objective Norm G Norm X Norm (X(k-1)-X(k))
0 1 1.839397E+00 8.2E-01 1.4E+00
1 3.7E-01 3 1.724275E+00 2.8E-01 1.3E+00 3.0E-01
2 1.6E+01 8 6.083488E-02 9.2E-01 9.3E-01 2.2E+00
3 1.6E-03 14 5.367978E-02 1.0E+00 9.6E-01 3.7E-02
4 4.8E-01 16 1.783392E-04 5.8E-02 1.1E+00 1.6E-01
5 1.0E+00 17 1.671122E-05 2.0E-02 1.1E+00 6.7E-03
6 1.0E+00 18 1.101991E-07 1.7E-03 1.1E+00 2.4E-03
7 1.0E+00 19 2.332133E-09 1.8E-04 1.1E+00 1.5E-04
8 1.0E+00 20 9.130964E-11 3.3E-05 1.1E+00 3.0E-05
9 1.0E+00 21 1.084975E-12 4.7E-06 1.1E+00 7.0E-06

10 1.0E+00 22 5.303367E-14 1.2E-06 1.1E+00 6.4E-07

Exit from E04DGF after 10 iterations.

Variable Value Gradient value
Varbl 1 0.500000 9.1E-07
Varbl 2 -1.00000 8.3E-07

Exit E04DGF - Optimal solution found.

Final objective value = 0.5303367E-13

10 Algorithmic Details

This section contains a description of the method used by E04DGF=E04DGA.

E04DGF=E04DGA uses a pre-conditioned conjugate gradient method and is based upon algorithm PLMA
as described in Gill and Murray (1979) and Gill et al. (1981) Section 4.8.3.

The algorithm proceeds as follows:

Let x0 be a given starting point and let k denote the current iteration, starting with k ¼ 0. The iteration
requires gk, the gradient vector evaluated at xk, the kth estimate of the minimum. At each iteration a
vector pk (known as the direction of search) is computed and the new estimate xkþ1 is given by xk þ �kpk
where �k (the step length) minimizes the function F ðxk þ �kpkÞ with respect to the scalar �k. A choice of
initial step �0 is taken as

�0 ¼ minf1; 2� jFk � Festj=gTk gkg
where Fest is a user-supplied estimate of the function value at the solution. If Fest is not specified, the
software always chooses the unit step length for �0. Subsequent step length estimates are computed using
cubic interpolation with safeguards.

A quasi-Newton method can be used to compute the search direction pk by updating the inverse of the
approximate Hessian ðHkÞ and computing

pkþ1 ¼ �Hkþ1gkþ1: ð1Þ
The updating formula for the approximate inverse is given by

Hkþ1 ¼ Hk �
1

yTk sk
Hkyks

T
k þ sky

T
k Hk

� �
þ 1

yTk sk
1þ yTk Hkyk

yTk sk

 !
sks

T
k ; ð2Þ

where yk ¼ gk�1 � gk and sk ¼ xkþ1 � xk ¼ �kpk.

The method used to obtain the search direction is based upon computing pkþ1 as �Hkþ1gkþ1 where Hkþ1

is a matrix obtained by updating the identity matrix with a limited number of quasi-Newton corrections.
The storage of an n by n matrix is avoided by storing only the vectors that define the rank two corrections
– hence the term ‘limited-memory’ quasi-Newton method. The precise method depends upon the number
of updating vectors stored. For example, the direction obtained with the ‘one-step’ limited memory update
is given by (1) using (2) with Hk equal to the identity matrix, viz.

E04 – Minimizing or Maximizing a Function E04DGF=E04DGA

[NP3546/20A] E04DGF=E04DGA.9

pkþ1 ¼ �gkþ1 þ
1

yTk sk
sTk gkþ1yk þ yTk gkþ1sk
� �

� sTk gkþ1

yTk sk
1þ yTk yk

yTk sk

 !
sk:

Using a limited-memory quasi-Newton formula, such as the one above, guarantees pkþ1 to be a descent

direction if all the inner products yTk sk are positive for all vectors yk and sk used in the updating formula.

11 Optional Parameters

Several optional parameters in E04DGF=E04DGA define choices in the problem specification or the
algorithm logic. In order to reduce the number of formal parameters of E04DGF=E04DGA these optional
parameters have associated default values that are appropriate for most problems. Therefore, the user need
only specify those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped by users who wish to use the default values for all optional
parameters. A complete list of optional parameters and their default values is given in Section 11.1.

Optional parameters may be specified by calling one, or both, of the routines E04DJF=E04DJA and
E04DKF=E04DKA prior to a call to E04DGF=E04DGA.

E04DJF=E04DJA reads options from an external options file, with Begin and End as the first and last lines
respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print level = 1

End

The call

CALL E04DJF (IOPTNS, INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit.
E04DJF=E04DJA should be consulted for a full description of this method of supplying optional
parameters.

E04DKF=E04DKA can be called to supply options directly, one call being necessary for each optional
parameter. For example,

CALL E04DKF (’Print Level = 1’)

E04DKF=E04DKA should be consulted for a full description of this method of supplying optional
parameters.

All optional parameters not specified by the user are set to their default values. Optional parameters
specified by the user are unaltered by E04DGF=E04DGA (unless they define invalid values) and so remain
in effect for subsequent calls unless altered by the user.

11.1 Optional parameter checklist and default values

For easy reference, the following list shows all the valid keywords and their default values. The symbol �
represents the machine precision (see X02AJF).

Optional Parameters Default Values

Defaults
Estimated Optimal Function Value
Function Precision �0:9

Iteration Limit maxð50; 5nÞ
Linesearch Tolerance 0.9
List/Nolist List (Nolist for E04DGA)
Maximum Step Length 1020

Optimality Tolerance �0:8

Print Level 10 (0 for E04DGA)
Start Objective Check at Variable 1
Stop Objective Check at Variable n

E04DGF=E04DGA NAG Fortran Library Manual

E04DGF=E04DGA.10 [NP3546/20A]

Verify Level 0

11.2 Description of the optional parameters

The following list (in alphabetical order) gives the valid options. For each option, we give the keyword,
any essential optional qualifiers, the default value, and the definition. The minimum abbreviation of each
keyword is underlined. If no characters of an optional qualifier are underlined, the qualifier may be
omitted. The letter a denotes a phrase (character string) that qualifies an option. The letters i and r denote
INTEGER and real values required with certain options. The number � is a generic notation for machine
precision (see X02AJF), and �R denotes the relative precision of the objective function.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Estimated Optimal Function Value r

This value of r specifies the user-supplied guess of the optimum objective function value Fest. This value
is used to calculate an initial step length �0 (see Section 10). If the value of r is not specified (the default),
then this has the effect of setting �0 to unity. It should be noted that for badly scaled functions a unit step
along the steepest descent direction will often compute the objective function at very large values of x.

Function Precision r Default ¼ �0:9

The parameter defines �R, which is intended to be a measure of the accuracy with which the problem
function F ðxÞ can be computed. If r < � or r � 1, the default value is used.

The value of �R should reflect the relative precision of 1þ jF ðxÞj; i.e., �R acts as a relative precision when
jF j is large, and as an absolute precision when jF j is small. For example, if F ðxÞ is typically of order

1000 and the first six significant digits are known to be correct, an appropriate value for �R would be 10�6.

In contrast, if F ðxÞ is typically of order 10�4 and the first six significant digits are known to be correct, an

appropriate value for �R would be 10�10. The choice of �R can be quite complicated for badly scaled
problems; see Chapter 8 of Gill et al. (1981) for a discussion of scaling techniques. The default value is
appropriate for most simple functions that are computed with full accuracy. However when the accuracy
of the computed function values is known to be significantly worse than full precision, the value of �R
should be large enough so that no attempt will be made to distinguish between function values that differ
by less than the error inherent in the calculation.

Iteration Limit i Default ¼ maxð50; 5nÞ
Iters
Itns

The value of i specifies the maximum number of iterations allowed before termination. If i < 0, the
default value is used.

Problems whose Hessian matrices at the solution contain sets of clustered eigenvalues are likely to be
minimized in significantly fewer than n iterations. Problems without this property may require anything
between n and 5n iterations, with approximately 2n iterations being a common figure for moderately
difficult problems.

Linesearch Tolerance r Default ¼ 0:9

The value r controls the accuracy with which the step � taken during each iteration approximates a
minimum of the function along the search direction (the smaller the value of r, the more accurate the
linesearch). The default value r ¼ 0:9 requests an inaccurate search, and is appropriate for most problems.
A more accurate search may be appropriate when it is desirable to reduce the number of iterations – for
example, if the objective function is cheap to evaluate. If r < 0 or r � 1, the default value is used.

E04 – Minimizing or Maximizing a Function E04DGF=E04DGA

[NP3546/20A] E04DGF=E04DGA.11

List Default for E04DGF ¼ List
Nolist Default for E04DGA = NoList

Normally each optional parameter specification is printed as it is supplied. Nolist may be used to suppress
the printing and List may be used to restore printing.

Maximum Step Length r Default ¼ 1020

If r > 0, the maximum allowable step length for the linesearch is taken as min 1
X02AMFðÞ ;

r
kpkk

� �
. If r � 0,

the default value is used.

Optimality Tolerance r Default ¼ �0:8R

The parameter r specifies the accuracy to which you wish the final iterate to approximate a solution of the
problem. Broadly speaking, r indicates the number of correct figures desired in the objective function at

the solution. For example, if r is 10�6 and termination occurs with IFAIL ¼ 0 (see Section 5), then the
final point satisfies the termination criteria, where �F represents Optimality Tolerance. If r < �R or r � 1,
the default value is used.

Print Level i Default for E04DGF ¼ 10
Default for E04DGA ¼ 0

The value i controls the amount of printout produced by E04DGF=E04DGA, as indicated below. A
detailed description of the printout is given in Section 8.1 (summary output at each iteration and the final
solution).

i Output
0 No output.
1 The final solution only.
5 One line of summary output (< 80 characters; see Section 8.1) for each iteration (no printout of the

final solution).
10 The final solution and one line of summary output for each iteration.

Start Objective Check at Variable i1 Default ¼ 1
Stop Objective Check at Variable i2 Default ¼ n

These keywords take effect only if Verify Level > 0 (see below). They may be used to control the
verification of gradient elements computed by routine OBJFUN. For example, if the first 30 elements of
the objective gradient appeared to be correct in an earlier run, so that only element 31 remains
questionable, it is reasonable to specify Start Objective Check at Variable 31. If the first 30 variables
appear linearly in the objective, so that the corresponding gradient elements are constant, the above choice
would also be appropriate.

If i1 � 0 or i1 > maxð1;minðn; i2ÞÞ, the default value is used. If i2 � 0 or i2 > n, the default value is
used.

Verify Level i Default ¼ 0
Verify
Verify Gradients
Verify Objective Gradients

These keywords refer to finite-difference checks on the gradient elements computed by the user-provided
routine OBJFUN. Gradients are verified at the user-supplied initial estimate of the solution. The possible
choices for i are as follows:

i Meaning

�1 No checks are performed.

0 Only a ‘cheap’ test will be performed, requiring one call to OBJFUN.

1 In addition to the ‘cheap’ test, individual gradient elements will also be checked using a reliable (but
more expensive) test.

E04DGF=E04DGA NAG Fortran Library Manual

E04DGF=E04DGA.12 [NP3546/20A]

For example, the objective gradient will be verified if Verify, Verify Yes, Verify Gradients, Verify
Objective Gradients or Verify Level ¼ 1 is specified.

E04 – Minimizing or Maximizing a Function E04DGF=E04DGA

[NP3546/20A] E04DGF=E04DGA.13 (last)

	E04DGF
	1 Purpose
	2 Specifications
	2.1 Specification for E04DGF
	2.2 Specification for E04DGA

	3 Description
	4 References
	5 Parameters
	N
	OBJFUN
	MODE
	N
	X
	OBJF
	OBJGRD
	NSTATE
	IUSER
	USER

	ITER
	OBJF
	OBJGRD
	X
	IWORK
	WORK
	IUSER
	USER
	IFAIL
	LWSAV
	IWSAV
	RWSAV
	IFAIL_E04DGA

	6 Error Indicators and Warnings
	IFAIL < 0
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5
	IFAIL = 6
	IFAIL = 7
	IFAIL = 8
	IFAIL = 9

	7 Accuracy
	8 Further Comments
	8.1 Description of Printed Output

	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	10 Algorithmic Details
	11 Optional Parameters
	11.1 Optional parameter checklist and default values
	11.2 Description of the optional parameters
	[Defaults]
	[Es]timated Optimal Function Value
	[F]unction Precision
	[It]eration Limit
	[Iters]
	[Itns]
	[Lin]esearch Tolerance
	[List]
	[Nolist]
	[O]ptimality Tolerance
	[P]rint Level
	[Sta]rt Objective Check at Variable
	[Sto]p Objective Check at Variable
	[V]erify [L]evel
	[V]erify
	[V]erify [G]radients
	[V]erify [O]bjective Gradients

	NAG Library Manual, Mark 21
	Foreword
	Introduction
	Essential Introduction - essential reading for all users
	NAG Fortran Library specific documentation
	Mark 21 News

	NAG SMP Library specific documentation
	SMP Introduction - essential reading for all SMP users
	Mark 21 News - SMP Library
	SMP Tuned and Enhanced Routines

	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction

